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Electrons on the surface of a strong topological insulator, such as Bi2Te3 or Bi1−xSbx, form a topologically
protected helical liquid whose excitation spectrum contains an odd number of massless Dirac fermions. A
theoretical survey and classification is given of the universal features, observable by the ordinary and spin-
polarized scanning tunneling spectroscopy, in the interference patterns resulting from the quasiparticle scatter-
ing by magnetic and nonmagnetic impurities in such a helical liquid. Our results confirm the absence of
backscattering from nonmagnetic impurities observed in recent experiments and predict new interference
features, uniquely characteristic of the helical liquid, when the scatterers are magnetic.
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A surface of the three-dimensional strong topological in-
sulator �STI� �Refs. 1–3� is a very special place. Topological
invariants that characterize the bulk band structure of the
underlying time-reversal invariant crystal guarantee the exis-
tence of an odd number of gapless surface states with the
characteristic Dirac dispersion. The surface electron spins are
aligned in the plane of the surface and point in the direction
perpendicular to the momentum vector, as indicated in Fig.
1�a�. Such arrangement of electron spins and momenta has
been termed “helical liquid” and is predicted to exhibit a
number of unusual physical properties.4–9

One important property of electrons in the helical liquid,
noted early on,1 is the absence of backscattering in the pres-
ence of nonmagnetic impurities. Since electrons with oppo-
site momenta also have opposite spins, backscattering re-
quires a spin-flip process, which cannot occur in the absence
of time-reversal symmetry �T� breaking. This fundamental
property of the helical liquid has been recently tested in a
series of experiments10–13 using the technique of the Fourier-
transform scanning tunneling spectroscopy �FT-STS� applied
to the previously discovered STIs Bi1−xSbx and Bi2Te3.14,15

The experimental results are consistent with simple heuristic
arguments for electron scattering in the helical liquid.

In this Rapid Communication we develop a detailed
theory of FT-STS in a helical liquid formed on the surface of
a STI. We focus on the characteristic universal physics en-
coded in the low-energy massless Dirac Hamiltonian,1,9

H = v� · �ẑ � p� + �
�=0

3

��V��r� �1�

describing the surface state of all STIs at probe frequencies
� tuned sufficiently close to the Dirac point. In Eq. �1� v is
the Fermi velocity, �= ��1 ,�2 ,�3� is the vector of Pauli spin
matrices, �0=1, p=−i��x ,�y� is the planar momentum opera-
tor �we take �=1� and V��r� is the impurity potential in
channel �.

We study the ordinary tunneling and, with an eye on the
future experiments, we make predictions for the spin-
resolved FT-STS.16 We find that nonmagnetic impurities pro-
duce only weak, nonsingular response in the ordinary FT-
STS �Fig. 1�b��, consistent with the expected absence of

backscattering. Interestingly, we find that weak magnetic im-
purities produce no response in the ordinary FT-STS, while
strong magnetic impurities produce only weak nonsingular
response, except possibly at a resonant frequency. The be-
havior is even more interesting for a spin-resolved probe.
Here, consistent with time-reversal symmetry nonmagnetic
impurities produce no signal, irrespective of their strength.
Magnetic impurities, on the other hand, give rise to distinc-
tive FT-STS patterns with inverse square-root singularities at
momenta �q��=2� /v. Depending on the direction of the im-
purity magnetic moment and the direction in which the probe
spin current is polarized, we find and classify patterns with
pronounced twofold and fourfold rotational modulations.
Such modulated patterns, in conjunction with future spin-
resolved FT-STS experiments, can be used to probe the fun-
damental properties of the helical liquid as well as the nature
of disorder that underlies these patterns. We note that other
aspects of magnetic impurities on STI surface have been
studied in Ref. 8.

The power of FT-STS technique, originally developed in
the context of simple metals17 and perfected in the studies of
high-temperature cuprate superconductors,18 lies in its ability
to use impurities present in any real material to probe the
electronic response of the underlying ideal clean material at
finite momenta q. The experiment measures the local density
of states, n�r ,��, at a large number ��106� of real-space
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FIG. 1. �Color online� �a� Dirac dispersion and spin orientation
in helical liquid on the surface of a strong topological insulator. �b�
FT-STS response I�00�q ,�� as a density plot in the �qx ,qy� plane
�top�, cut along the qx direction �bottom�.
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locations r on the sample surface. The spatial Fourier trans-
form of this signal n�q ,�� contains the useful information.
Theoretically it can be related to the full electron propagator
G�r ,r� ;�� as

n�q,�� = −
1

�
I� d2re−ir·q Tr�G�r,r;��� . �2�

Here the trace is taken over spin and I denotes the
strength of a branch cut across the real frequency axis
If���	�f��+ i	�− f��− i	�� /2i, with 	 as a positive infini-
tesimal. In momentum space the electron propagator has a

simple representation in terms of the T̂ matrix,

G�k,k�;�� = 	kk�G
0�k,�� + G0�k,��T̂kk����G0�k�,�� ,

�3�

where G0�k ,��= ��−v�kx�y −ky�x��−1 is the unperturbed

propagator and the T̂ matrix is subject to the Lippman-
Schwinger equation

T̂kk���� = V̂k−k� + �
q

V̂k−qG0�q,��T̂qk���� . �4�

Matrix V̂k=�
Vk

�
 is the Fourier transform of the impurity

term in Hamiltonian �1�.
Below, in addition to the ordinary FT-STS we shall con-

sider also the spin-resolved FT-STS which is obtained by
replacing Tr��iG�r ,r ;��� in the integrand of Eq. �2�. Here
and hereafter Greek indices run from 0 to 3 while Roman
indices run from 1 to 3. It is useful to consider the quantity
n�
�q ,�� which describes the FT-STS response of a tunnel-
ing probe in charge or spin channel � to weak impurities in
charge or spin channel 
.

When the impurity potential is weak it is permissible to

employ the Born approximation, T̂kk����
 V̂k−k�. In this
limit, as first noted by Capriotti et al.,19 the interesting
q-dependent part of the FT-STS signal can be expressed in a
simple factorized form

	n�
�q,�� = −
1

�
�Vq


�I���
�q,��� , �5�

where

��
�q,�� = �
k

Tr���G0�k,���
G0�k − q,��� . �6�

Since Vq

 is a Fourier transform of a random potential one

expects it to be a featureless function of q. ��
�q ,��, on the
other hand, represents the response of the underlying clean
system and contains, in general, prominent features as a
function of q that can be used to directly infer its properties.
We now evaluate this response function for our model
Hamiltonian �1�. Working in the continuum limit and passing
to the Matsubara frequency we have

��
�q,i�� =� d2k

�2�2�
L�


��2 + k2���2 + �k − q�2�
, �7�

where we also set v=1. The factor in the numerator contains
the trace of the Pauli matrices and can be expressed as
L�
=2�
�i� j� Tr����i�
� j�, where �= �kx ,ky , i��,
��= �kx−qx ,ky −qy ,−i��, and �0,3=1, �1,2=−1.

Integrals of the type indicated in Eq. �7� are evaluated
most conveniently using the technique of Feynman
parametrization20 and have been studied in the context of
high-Tc cuprate superconductors21 and more recently
graphene.22 In fact we may read off the results for �00 and
�33 directly from these studies and the remaining integrals
can be evaluated in a similar fashion. Our results are sum-
marized in Table I which represents the main result of the
present Rapid Communication. They are expressed in terms
of two functions,

G�z� =
2

�− z2 − 1
arctan

1
�− z2 − 1

, �8�

and F�z�= �−z2−1�G�z� of the dimensionless variable
z=2i� / �q�. The results listed in Table I satisfy

��
�q,�� = �
��− q,�� , �9�

a property that can be easily established from Eq. �6�.
The first line in the table ��=0� describes the ordinary

spin-unpolarized FT-STS. The response to nonmagnetic im-
purities �00, shown in Fig. 1�b�, is nonvanishing but weak.
In the ordinary metal such response would entail a singular-
ity at momenta q� such that the band energy 
�q� /2�=�, the
probe bias. This singularity arises from impurity scattering
between states at momenta q� /2 and −q� /2. In the present
case of helical liquid such backscattering processes are pro-
hibited by time-reversal symmetry1,10–13 and consequently
I�00 shows only a kink. Interestingly, we find that FT-STS

TABLE I. Results for FT-STS response function 2���
�q , i�� evaluated from Eq. �7�. Here � represents
the ultraviolet cutoff, comparable to the bandwidth of the surface state, z=2i� / �q� and q̂= �qx ,qy� / �q�.
Functions F�z� and G�z� are defined in the text.

� \
 0 1 2 3

0 ln�1+�2 /�2�−F�z� 0 0 0

1 0 q̂x
2�2+z2G�z��−1 q̂xq̂y�2+z2G�z�� −q̂xzG�z�

2 0 q̂xq̂y�2+z2G�z�� q̂y
2�2+z2G�z��−1 −q̂yzG�z�

3 0 q̂xzG�z� q̂yzG�z� −ln�1+�2 /�2�−G�z�
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response to magnetic impurities, �0i, vanishes identically in
the Born limit. In this case T does not prohibit backscattering
but the response nevertheless vanishes due to the symmetry
property of the integral in Eq. �7�. Specifically, Eq. �9� im-
plies that �0i�q ,��=�i0�−q ,�� and we shall see below that
the latter must vanish due to T invariance.

Table I also indicates that response of spin-polarized FT-
STS to nonmagnetic impurities, �i0, vanishes. This can be
understood as follows. With nonmagnetic impurities the sur-
face of STI remains T-invariant and therefore cannot produce
a response in the spin channel. We expect this conclusion to
remain valid even beyond the Born approximation and be-
yond the simple linear Dirac model adopted in this Rapid
Communication.

Spin-polarized FT-STS in the presence of magnetic impu-
rities, �ij, shows the most interesting behavior. In all cases
I�ij�q ,�� exhibits an inverse square-root singularity, con-
tained in the function G�z� Eq. �8�, at momenta �q��=2� /v.
In addition, all channels except for �33 show interesting an-
gular dependence on q with twofold and fourfold symme-
tries. For a general direction of impurity magnetic moment
m̂ and the STM tip spin-polarization direction n̂, the singular
part of the response can be written compactly as

�m̂n̂
sing�q,i�� =

1

2�
�m̂ · Q���n̂ · Q�z2G�z� , �10�

where Q= �q̂x , q̂y , �q� /2i�� and � denotes complex conjuga-
tion. These patterns, displayed in Fig. 2, could be used to
identify the dominant source of scattering in future spin-
resolved FT-STS experiments. Specifically, the distinctive
angular dependence can be exploited to deduce the direction
of the magnetic moment of impurities deliberately deposited
on the surface of STI.23

Our result of vanishing responses in �0j and �i0 channels
raises the question of whether this conclusion survives be-
yond the Born approximation. Corrections to the Born ap-
proximations may become important when the scattering po-

tential is strong. To this end we now consider the full T̂
matrix governed by Eq. �4�. For an arbitrary impurity poten-
tial it is possible to find the solution only numerically. For
isolated pointlike impurities it is however possible to obtain
exact analytical results. In the following we shall focus on
this limit.

For a single impurity characterized by a 	-function real

space potential at the origin we have V̂k=�
V
�
, indepen-

dent of k. The solution for the T̂ matrix is simplest and most
instructive when we consider scattering in a single channel,

V̂k=V
�
 �no summation over 
�. The T̂ matrix is then also
momentum independent and can be written as

T̂kk�

 ��� = �

�

��T�

��� . �11�

Substituting this form into Eq. �4� and taking the trace we

find an equation for T̂�

��� of the form

T�

��� = V
	�
 +

1

2
V
g0����

�

Tr����
���T�

��� , �12�

where

g0��� =
1

2�
k

Tr�G0�k,��� = − S
�

4�
ln�1 −

�2

�2 
 . �13�

Here S is the area of the STI surface and for finite concen-
tration of impurities it should be replaced by the inverse
impurity density nI

−1. The solution of Eq. �12� reads

T


��� =

V


1 − V
g0���
, �14�

T0
j ��� =

�Vj�2g0���
1 − �Vjg0����2 , �15�

and all other components vanish.
Equation �14� describes the expected resonant enhance-

ment of the scattering potential due to the higher order terms
in the Born series. This will affect the amplitude but not the
momentum structure of the FT-STS signal.

The result in Eq. �15� is more interesting and informs us
that starting at the second order in the Born expansion scat-
tering potential in the � j channel �i.e., magnetic impurities

with the moment along direction j� produces nonzero T̂ ma-
trix in the charge channel. Magnetic impurities, therefore,
will be visible by the ordinary FT-STS probe although the
signal might generally be weak due to its appearance in the
second order of the expansion in the powers of Vj. Since the

T̂ matrix does not introduce any new momentum dependence
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FIG. 2. Spin-resolved FT-STS response
I�ij�q ,�� to magnetic impurities. Top row gives
the density plot in the �qx ,qy� plane in channel
�ij� indicated in the upper left corner. Bottom row
shows the corresponding cuts along the indicated
lines parametrized by qx.
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for pointlike scatterers the momentum-space structure of
	n0j�q ,�� will be the same as 	n00�q ,��, displayed in Fig.
1�b�.

Finally it is worth noting that Eq. �12� implies Ti
0���=0,

confirming our previously stated expectation that nonmag-
netic impurities cannot produce a signal in the spin-resolved
FT-STS. Therefore, 	ni0�q ,�� remains zero to all orders in
the Born expansion, as dictated by T invariance of the un-
derlying system.

Our results presented above underscore the unique capa-
bilities of the FT-STS technique and its spin-polarized coun-
terpart, applied to the surface of a three-dimensional strong
topological insulator. The expected absence of backscattering
in the helical liquid formed on such a surface in the presence
of nonmagnetic impurities1,10–13 is reflected by the nonsingu-
lar FT-STS response shown in Fig. 1�a�. This stands in a
sharp contrasts to the response of the ordinary metal which
involves inverse square-root singularity when 
�q /2�=�.

In addition to this finding our study reveals several strik-
ing and unexpected features when the impurities are mag-
netic. First, although backscattering is not prohibited in this
case, we find that the FT-STS response nevertheless vanishes
identically for weak scattering potential treated in the Born
approximation. The reason for this unexpected null result is
the symmetry property Eq. �9� of the response function
��
�q ,�� which equates the relevant response �0j�q ,�� to
� j0�−q ,��. The latter in turn underlies the spin-polarized
response to weak nonmagnetic disorder and must therefore
vanish in a T-invariant system. We note that this conclusion
does not rely in any way on our assumption of the Dirac
Hamiltonian �1� but follows from the general requirement of
time reversal invariance and symmetry �Eq. �9�� and will

remain valid for arbitrary momenta away from the Dirac
point. Indeed this result is applicable to an arbitrary
T-invariant system and indicates that the response of ordi-
nary FT-STS to magnetic part of the scattering potential will
generally be weak as it appears only in the second order of
the Born expansion.

In order to get strong FT-STS response to magnetic dis-
order one must employ the spin-resolved tunneling probe.16

In this case the inverse square-root divergence at 
�q /2�
=� is recovered. In our Dirac model of STI surface �Eq. �1��
this singular response is accompanied by a distinctive pattern
of rotational anisotropy summarized by Eq. �10� which ap-
pears when either m̂ or n̂ have a component in the plane of
the sample surface.

To model the FT-STS response away from the Dirac point
one must include corrections to the Dirac Hamiltonian re-
flecting the underlying band structure at larger momenta.
Very recently, such terms have been considered to model the
surface state band structure of Bi2Te3 and results in good
agreement with experiments have been obtained.24,25 For
other topological insulators such effects will be different as
they depend on the details of the underlying crystal structure.
Our results, on the other hand, will remain applicable to any
STI surface when the probe bias is tuned sufficiently close to
the Dirac point and constitute the universal low-energy
theory of FT-STS on the topologically protected STI surface
states.
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